privacy cryptosystem - translation to russian
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:     

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

privacy cryptosystem - translation to russian

Damgaard-Jurik cryptosystem; Damgaard–Jurik cryptosystem; Damgård-Jurik cryptosystem; Damgard–Jurik cryptosystem; Damgard-Jurik cryptosystem

privacy cryptosystem      
криптосистема для сохранения секретности (информации) криптосистема для сохранения секретности (информации)
data privacy         
TOPIC REGARDING THE APPROPRIATE COLLECTION, USE AND DISSEMINATION OF PERSONAL DATA IN PRODUCTS AND SERVICES, AS WELL AS THEIR PROTECTION AND RELATED LEGAL AND POLITICAL ISSUES
Data protection; Data Protection; Information Privacy; Private data; Data privacy; Informational privacy; Data protection policy
конфиденциальность данных
information privacy         
TOPIC REGARDING THE APPROPRIATE COLLECTION, USE AND DISSEMINATION OF PERSONAL DATA IN PRODUCTS AND SERVICES, AS WELL AS THEIR PROTECTION AND RELATED LEGAL AND POLITICAL ISSUES
Data protection; Data Protection; Information Privacy; Private data; Data privacy; Informational privacy; Data protection policy
конфиденциальность информации

Definition

data protection
¦ noun legal control over access to and use of data stored in computers.

Wikipedia

Damgård–Jurik cryptosystem

The Damgård–Jurik cryptosystem is a generalization of the Paillier cryptosystem. It uses computations modulo n s + 1 {\displaystyle n^{s+1}} where n {\displaystyle n} is an RSA modulus and s {\displaystyle s} a (positive) natural number. Paillier's scheme is the special case with s = 1 {\displaystyle s=1} . The order φ ( n s + 1 ) {\displaystyle \varphi (n^{s+1})} (Euler's totient function) of Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be divided by n s {\displaystyle n^{s}} . Moreover, Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be written as the direct product of G × H {\displaystyle G\times H} . G {\displaystyle G} is cyclic and of order n s {\displaystyle n^{s}} , while H {\displaystyle H} is isomorphic to Z n {\displaystyle Z_{n}^{*}} . For encryption, the message is transformed into the corresponding coset of the factor group G × H / H {\displaystyle G\times H/H} and the security of the scheme relies on the difficulty of distinguishing random elements in different cosets of H {\displaystyle H} . It is semantically secure if it is hard to decide if two given elements are in the same coset. Like Paillier, the security of Damgård–Jurik can be proven under the decisional composite residuosity assumption.

What is the Russian for privacy cryptosystem? Translation of &#39privacy cryptosystem&#39 to Russian